LL D$513396$ - définition. Qu'est-ce que LL D$513396$
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est LL D$513396$ - définition

LEFT-TO-RIGHT, LEFTMOST DERIVATION TOP-DOWN PARSER FOR A SUBSET OF CONTEXT-FREE LANGUAGES
LL(1); LL parsing; LL(k); LL Parsing table; LL(1) language; LL1; Left factoring; LL(k) parser

ll.         
WIKIMEDIA DISAMBIGUATION PAGE
LL (disambiguation); L.L.; L.l.; Ll.; L L
¦ abbreviation (in textual references) lines.
LL         
  • ŀl}} ligature as used in Catalan on a [[Barcelona Metro]] sign
  • Kalaallit nunaata aallartitaqarfia}}.
LATIN-SCRIPT DIGRAPH
Ŀl; Double-L; L·l; Ll (digraph); Ll (letter); Ela geminada; Ỻ; Ꝇ
<grammar> A class of language grammars, which can be parsed without backtracking. The first L stands for Left-to-right scan, the second for Leftmost derivation. Often found in the form LL(k) where k is the number of tokens of look-ahead required when parsing a sentence of the language. In particular, LL(1) is a fairly restrictive class of grammar, but allows simple top-down parsing (e.g. recursive-descent) to be used without wasteful backtracking. A number of programming languages are LL(1) (or close). (1995-10-30)
LL parser         
In computer science, an LL parser (Left-to-right, leftmost derivation) is a top-down parser for a restricted context-free language. It parses the input from Left to right, performing Leftmost derivation of the sentence.

Wikipédia

LL parser

In computer science, an LL parser (Left-to-right, leftmost derivation) is a top-down parser for a restricted context-free language. It parses the input from Left to right, performing Leftmost derivation of the sentence.

An LL parser is called an LL(k) parser if it uses k tokens of lookahead when parsing a sentence. A grammar is called an LL(k) grammar if an LL(k) parser can be constructed from it. A formal language is called an LL(k) language if it has an LL(k) grammar. The set of LL(k) languages is properly contained in that of LL(k+1) languages, for each k ≥ 0. A corollary of this is that not all context-free languages can be recognized by an LL(k) parser.

An LL parser is called LL-regular (LLR) if it parses an LL-regular language. The class of LLR grammars contains every LL(k) grammar for every k. For every LLR grammar there exists an LLR parser that parses the grammar in linear time.

Two nomenclative outlier parser types are LL(*) and LL(finite). A parser is called LL(*)/LL(finite) if it uses the LL(*)/LL(finite) parsing strategy. LL(*) and LL(finite) parsers are functionally more closely resemblant to PEG parsers. An LL(finite) parser can parse an arbitrary LL(k) grammar optimally in the amount of lookahead and lookahead comparisons. The class of grammars parsable by the LL(*) strategy encompasses some context-sensitive languages due to the use of syntactic and semantic predicates and has not been identified. It has been suggested that LL(*) parsers are better thought of as TDPL parsers. Against the popular misconception, LL(*) parsers are not LLR in general, and are guaranteed by construction to perform worse on average (super-linear against linear time) and far worse in the worst-case (exponential against linear time).

LL grammars, particularly LL(1) grammars, are of great practical interest, as parsers for these grammars are easy to construct, and many computer languages are designed to be LL(1) for this reason. LL parsers may be table-based, i.e. similar to LR parsers, but LL grammars can also be parsed by recursive descent parsers. According to Waite and Goos (1984), LL(k) grammars were introduced by Stearns and Lewis (1969).